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Theoretical investigation of acoustic wave interactions with turbulent premixed flames
was conducted to evaluate the acoustic energy amplification and/or damping due
to the interaction of low-frequency acoustic waves with turbulent flames in three-
dimensional space. Such amplified or damped acoustic energy is either coherent or
incoherent as wrinkled flames cause coherent energy of a monochromatic acoustic
wave to be damped into incoherent energy of spatially diffused and spectrally
broadened acoustic waves. Small perturbation method (SPM) up to the second
order was utilized to analyse net coherent and incoherent acoustic energies of the
reflected and transmitted waves scattered from a weakly wrinkled turbulent flame
surface in random motion. General formulations for net coherent and incoherent
energy budget of the scattered fields were derived that can be applied to any type
of flame height statistics. Production and/or damping of acoustic energy scattered
from a turbulent flame is attributed to two effects: one is the acoustic velocity jump
due to flame’s unsteady heat release and the other is the flame’s wrinkling due to its
unsteady motion. Dimensionless parameters that govern net acoustic energy budget
were derived in case of Gaussian statistics of flame surface behaviour: the r.m.s. and
correlation length of flame height, the frequency ratio of the incidence frequency to
the flame’s correlation frequency, the time ratio of the flame’s diffusion to correlation
time and the incidence angle. The results of the scattered acoustic energy budget
showed that noticeable amplification of acoustic energy was obtained either for a
small frequency ratio (�1) at the critical incidence angle or for a large frequency
ratio and time ratio (�1), while damping was obtained for a small frequency ratio
at off-critical incidence angles. The relative importance of unsteady heat release (the
jump effect) and unsteady motion (the wrinkling effect) to net acoustic energy is
controlled mainly by the frequency ratio: The unsteady heat release effect dominates
the wrinkling effect at a large frequency ratio, and vice versa at a small frequency
ratio. The energy transfer from coherent to incoherent energy is due to flame surface
wrinkling and is enhanced with the square of the flame’s r.m.s. height.

1. Introduction
This paper deals with the analysis of acoustic wave interactions with turbulent

premixed flames. Such interactions play an important role in many fundamental and
practical problems in various combustion and propulsion systems. For instance, those
interactions affect the characteristic unsteadiness of combustion processes and play
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a crucial role in the problem of combustion instabilities, which have been known
to arise from the interactions between acoustic waves and combustion processes
which occur in a self-exciting manner at lean premixed conditions (Putnam 1971;
Lieuwen & Yang 2005). Acoustic wave–flame interactions have been considered in
a large number of theoretical and experimental studies so far. Theoretical treatment
of the acoustic wave–flame interaction phenomena was initiated by Chu (1952), who
regarded the flame front as a temperature discontinuity that separates the unburned
reactants from the burned products. Markstein (1964) also analysed the effects of
unsteady small perturbations upon a steady-state planar flame by treating the flame
front as a surface of discontinuity and applying the first-order perturbation methods
to linearize the conservation equations of mass, momentum and energy and flame
kinematic equations. These works have been extended in several analyses, such as
those of McIntosh (1987, 1991, 1999) and McIntosh & Wilce (1991), Peters &
Ludford (1983) and Ledder & Kapila (1991), which assessed the effects of pressure
perturbations on the unsteady inner flame structure. Other analyses incorporating the
coupling effects between the acoustic wave and the burning-rate fluctuations have
also been reported by Clavin, Pelce & He (1990), Poinsot & Candel (1988), Lieuwen
(2001a) and others. Another important process in these interactions, i.e. the periodic
acceleration and/or convection of the flame front by the oscillatory flow field, has been
discussed by Markstein (1964), Searby & Rochwerger (1991) and Fleifil et al. (1996).

There are three canonical modes of disturbances, i.e. acoustic, entropy and vorticity
modes which become strongly coupled at the flame front (Chu & Kovasznay 1958).
The acoustic wave–flame interactions are manifested by amplification or damping of
acoustic waves via energy transfer among these three disturbance modes. Theoretical
investigations were reported by McIntosh (1987), Poinsot & Candel (1988), Lieuwen
(2001a) and others. McIntosh (1987) reported that the low-frequency acoustic wave
amplification is sensitive to the impedance at the burner surface. More recently,
Lieuwen (2001a) reported two-dimensional analysis by considering acoustic waves
that are obliquely incident upon the planar flame front. He demonstrated that net
acoustic energy out of the flame is controlled by competition between acoustic
energy production and dissipation processes. Energy addition is due to unsteady heat
release through fluctuations in flame speed or density while energy damping is due
to baroclinic production of vorticity. He reported that such amplification/damping
of acoustic energy is more complicated process which results from the combined
effects of refraction, temperature jump across the flame, vorticity production and
flame speed modulation, and so on. Other researchers, for instance, Poinsot et al.
(1987), Bloxsidge et al. (1988) and McManus, Poinsot & Candel (1993), reported
estimations of amplification or damping of acoustic waves by utilizing Rayleigh’s
criterion to evaluate local or global instability associated with combustion–acoustic
wave interactions. (Rayleigh’s criterion states that acoustic waves will be locally
amplified (damped) if acoustic pressure is in phase (out of phase) with flame’s heat
release oscillations.)

The primary emphasis of the theoretical work mentioned above is to model the
laminar flame–acoustic wave interaction problems. Searby & Clavin (1986) performed
theoretical analysis to examine the dynamic behaviour of a wrinkled flame front
propagating downwards in a weakly turbulent flow. Coupled linearized forms of
continuity, momentum and flame’s kinematic equations are solved to evaluate the
mutual interactions between wrinkled flame and turbulent flow field in terms of
Froude number (gravity effect) and Markstein number (flame’s curvature effect).
They applied jump conditions of pressure and velocity across the mean flame surface



Analysis of low-frequency wave scattering by turbulent premixed flame 139

to calculate amplification/damping of flow velocity and flame position. However,
fluctuation quantities of flame front position, pressure and velocity are assumed to
follow harmonic oscillation and, therefore, stochastic analysis associated with the
random effect of turbulent flames is not actually incorporated. Furthermore, the
boundary conditions are applied to the mean flame surface, not to its instantaneous
position. Several more recent studies (Lieuwen 2001b, 2002; Lieuwen & Cho 2005)
have extended the developed analysis based on the laminar flame to the problems
of acoustic wave interaction with turbulent flames by applying stochastic analysis to
account for randomly wrinkling turbulent flames. They analysed the high-frequency
acoustic wave scattering from single-connected wrinkled flame fronts by modelling
the flame as a dynamically evolving wrinkled temperature discontinuity. Their
results suggest that several qualitative differences exist between the characteristics
of scattering waves from laminar and turbulent flames. Most significance of these
results is the fact that a coherent harmonically oscillating acoustic wave incident
upon a turbulent flame generates both coherent and incoherent scattered waves.
This is due to the characteristics of the wrinkled turbulent flame that transmits
coherent acoustic energy into diffuse incoherent energy. Moreover, with increasing
the roughness σ/λ (σ : the standard deviation of roughness, λ: acoustic wavelength),
the power of the coherent field decreases and, subsequently, the power of the
incoherent field increases, at least for small σ/λ. The above-mentioned studies about
acoustic–turbulent flame interaction are based on the assumption of high-frequency
acoustic waves, which utilized the Kirchoff approximation, or the tangent plane
approximation, where the flame front locally looks planar to the short-wavelength
acoustic wave. However, combustion instabilities have also been reported to be often
observed in a low-frequency regime. For example, both aeroderivatives (liquid rockets)
and land-based gas turbines were reported to suffer from combustion instabilities
within 500 Hz frequency range (Lieuwen & Yang 2005, chapters 1 and 7). Hence
the flame interactions with low-frequency acoustic waves are also regarded as being
consequential in the context of combustion instabilities. The aim of the present
study is to reveal the characteristics of low-frequency acoustic waves–turbulent
flame interactions by utilizing small perturbation method (SPM) to examine how
much coherent and incoherent acoustic energy is amplified and/or damped by the
interaction of a low-frequency wave with a turbulent flame and identify the key
parameters controlling the acoustic energy amplification and/or damping. The scope
of the present study is as follows: Section 2 introduces the scattering amplitudes and
evaluates them using SPM with the second-order accuracy and derives formulations of
the scattered acoustic energy budget. Section 3 demonstrates analytical and numerical
results to quantitatively examine the characteristics of net acoustic energy budget.
Concluding remarks are in § 4.

2. Analysis
2.1. Problem statement and basic assumptions

Figure 1 illustrates the schematics where plane incident waves impinge upon a
randomly moving wrinkled flame surface and, subsequently, scattered waves are
reflected and transmitted by the flame. The problems of interest are associated with

(i) how the scattered, i.e. reflected and transmitted, acoustic fields are characterized
in terms of the incident wave field and the flame’s kinematics quantities,

(ii) how the acoustic energy is amplified and/or damped after scattering, and how
net acoustic energy of the scattered fields can be obtained quantitatively and
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Figure 1. Schematic illustration of a flame surface in acoustic fields.

(iii) what key factors influence the net coherent and incoherent energies of scattered
wave fields.

Several assumptions are made to render the theoretical approach tractable.
(i) The height and slope of a wrinkled flame surface are small (see (2.20)).
(ii) The flame extends without boundary. This assumption is equivalent to

neglecting edge effects, such as diffraction from the flame edges.
(iii) Multiple scattering is not considered, i.e. all scattering is assumed to be single

scattering. This assumption, called Rayleigh’s hypothesis, is known to yield the same
result as the exact solution as long as the slope of the rough surface is sufficiently
small; e.g. if the maximum slope of surface is not greater than 0.448 for the Dirichlet
problem (Voronovich 1999). The assumption of single scattering implies that the
present analysis applies to wrinkled flamelets, not to corrugated flamelets where
multiple scattering will be present.

(iv) The flame front is temperature discontinuity that separates the unburned
reactants and burned products.

(v) Vorticity and entropy modes are neglected in the present analysis. In fact,
neglecting the vorticity mode can lead to a significant overestimation of the acoustic
energy production by flames in some cases. For example, the vorticity produced by
the interaction between a laminar flame and acoustic waves can damp as much as
14 % of the incident acoustic energy when an incident wave is impinged on a flame
at the critical (cut-off) angle, as is demonstrated by Lieuwen (2001). This is typical of
hydrogen-rich flames where the flame speed Mach number is usually above 0.005. For
typical hydrocarbon flames, flame speed is much lower; e.g. the flame speed Mach
number for a stoichiometric methane/air flame is about 0.001. In this case, acoustic
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damping due to vorticity production is less than 3 % of the incident acoustic energy
for all angles of incidence.

In realistic situations the overall net acoustic energy provided by the turbulent
flame–acoustic wave interaction is likely to be determined by the complex nature of
the combined effects among acoustic processes, unsteady heat release, turbulent flame
wrinkling, vorticity production and so on. Therefore, full consideration of all of these
effects still poses a quite challenging task. As such, this paper makes no attempt to
address all of these effects. Rather, the present analysis focuses on acoustic processes
with consideration of unsteady heat release and wrinkling by turbulent flame, but
without consideration of vorticity mode, as the specific objective of the present study
is to provide general formulations for net coherent and incoherent acoustic energy
budget of the scattered fields by the turbulent flame–acoustic wave interaction.

2.2. Scattered acoustic fields and boundary conditions

The linearized wave equation in terms of the velocity potential ψ and sound sources
Q is of the form (

∇2 − 1

c2

∂2

∂t2

)
ψ(R, t) = Q(R, t), (2.1)

where c is the speed of sound, t is time, ∇2 = ∂xx + ∂yy + ∂zz, R = (x, y, z). ψ , velocity
potential, is related to the acoustic velocity v and acoustic pressure p as

v = ∇ψ(R, t), p = −ρ0

∂ψ(R, t)

∂t
, (2.2)

where ∇ is three-dimensional gradient (= (∂x, ∂y, ∂z)), the acoustic pressure was
obtained from the linearized Euler’s equation, ρ0∂v/∂t = −∇p. The solution of a
linearized wave equation can be expressed in terms of superposition of elementary
plane waves as utilized by Voronovich (1999). The present analysis utilizes his
approach but incorporates frequency domain analysis to account for the frequency
shift due to the flame’s unsteady effect, which is not considered by Voronovich.
Consider media 1 and 2 that are separated by a (flame front) boundary as shown
in figure 1. Let the incident wave be a plane wave that is propagating in medium 1
with a horizontal component of wavenumber vector k0 and angular frequency ω0 and
impinging upward upon the (flame front) boundary. Then the total acoustic fields in
each medium can be described by the following forms:

In medium (m), ψ (m)(R, t) = Re
[
ψ (m)

c

]
(m = {1, 2}) (2.3)

ψ (1)
c

A
=
(
ρ1q

(1)
0

)−1/2
ei(k0 · r+q

(1)
0 z−ω0t) +

∫
ω

∫
k

∫
S11(k, k0, ω, ω0)

×
(
ρ1q

(1)
k

)−1/2
ei(k · r−q

(1)
k z−ωt) dk dω, (2.4)

ψ (2)
c

A
=

∫
ω

∫
k

∫
S21(k, k0, ω, ω0)

(
ρ2q

(2)
k

)−1/2
ei(k · r+q

(2)
k z−ωt) dk dω (2.5)

A= |PI |
iω0

(
q

(1)
0

ρ1

)1/2

, q
(1)
0 = [(ω0/c1)

2 − k2
0]

1/2, q
(m)
k = [(ω/cm)2 − k2]1/2 (m = {1, 2}),

k = |k| , r = (x, y),

where ρ1, c1 and ρ2, c2 are density and sound speed in media 1 and 2, respectively,
PI is a complex amplitude of an incident wave pressure, and q

(1)
0 , q

(1)
k and q

(2)
k are

the vertical wavenumber components of the incident and scattered waves in each
medium. (ρ1q

(1)
k )−1/2 in (2.4) and (ρ2q

(2)
k )−1/2 in (2.5) result from rendering the energy
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flux along the z -axis to be constant and k independent (Voronovich 1999). These can
be complex when ω/c < k, representing exponentially decaying waves. S11 and S21 will
be evaluated from the boundary conditions on the flame front where SN1N2 denotes
the scattering amplitude of waves that are scattered into medium N1 by incident waves
from medium N2. Therefore, S11(S21) is related to the reflected (transmitted) waves.

Boundary conditions at the flame front are characterized by jump conditions in
acoustic pressure and velocity due to unsteady gas expansion from a flame front. These
jump conditions have been derived by many researchers using conservation relations
and reported to be expressed as mean flame speed Mach number for unburned
gas, MS( = S̄

(1)
L /c1), and perturbations in mass burning rate and pressure (Chu 1952;

McIntosh 1991; Lieuwen 2001a). The jump condition in a linearized acoustic pressure
p1 across a flame front is of the order of O(M2

S ), i.e. p
(1)
1 =p

(2)
1 + O(M2

S ) (Lieuwen

2001a) and, therefore, is reduced to the continuity condition, p
(1)
1 = p

(2)
1 , of the order

of O(MS), which is also expressed in terms of velocity potential using (2.2).

ρ1

∂ψ (1)
c (R, t)

∂t

∣∣∣∣
z=h(r,t)

= ρ2

∂ψ (2)
c (R, t)

∂t

∣∣∣∣
z=h(r,t)

, (2.6)

where h is a perturbation in flame height. The velocity jump condition at the flame
front can be obtained from the linearized energy equation. For instance, the energy
equation was linearized by Lieuwen (2001a).

v
(2)
1,n

c1

−
v

(1)
1,n

c1

= MS

(
(γ + Λ − 1)

γ

p
(1)
1

p0

− Λ
p

(2)
1

p0

+ (Λ − 1)
S

(1)
L,1

S
(1)
L,0

)
+ O

(
M2

S

)
, (2.7)

where v1,n denotes a linearized acoustic velocity that is normal to a wrinkled

flame surface, S
(1)
L,0 and S

(1)
L,1 are mean and linearized flame speed, Λ ( = T2/T1) is

a temperature ratio of medium 2 to medium 1, and γ is specific heat ratio. Mass
burning rate m = ρ1S

(1)
L can be linearized to yield S

(1)
L,1/S

(1)
L,0 = m1/m0 − p

(1)
1 /(γp0),

where p
(1)
1 /ρ1,1 = c2

1 = γp0/ρ1,0 is used. Then (2.7) can be rewritten in terms of m1/m0

and p1 = p
(1)
1 =p

(2)
1 + O(M2

S ).

v
(2)
1,n(t)

c1

−
v

(1)
1,n(t)

c1

= (Λ − 1)MS

(
m1(t)

m0

− p1(t)

p0

)
+ O

(
M2

S

)
, (2.8)

where m1(t)/m0 can be further evaluated by linearizing the burning rate M(υ)
(≡ m(t)/Mr where Mr = (ρSL)r is reference mass flux per unit area, υ = (θtr )

−1t

where θ is dimensionless activation energy, tr = ρrλr/cprM
2
r = (αth/S

2
L)r is a reference

value of flame’s diffusion time. The term ‘diffusion’ originates from the reasoning that
tr is a quantity associated with the thermal diffusivity αth.) as reported by Peters &
Ludford (1983, equation (22)).

b
d lnM(υ)

dυ
− M2(υ)

{
lnM2(υ) + α

(
1 − P(υ)(γ −1)/γ

)}
= −2

γ − 1

γ

d ln P(υ)

dυ
, (2.9)

where α = 2, b = 1 − Le−1, P(υ) = p(t)/pr with Le for Lewis number and pr for
reference pressure. Expanding M and P in power series of θ−1, i.e. M = 1 + θ−1M1 +
O(θ−2) and P = 1+ θ−1P 1 +O(θ−2), and collecting O(θ−1) in (2.9) yields a linearized
mass burning rate with Mr = m0 and pr = p0 for unity Lewis number.

m1(t)

m0

=
γ − 1

γp0

(
α

2
p1(t) + θtr

∂p1(t)

∂t

)
(2.10)
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which is then substituted into (2.8) to yield the acoustic velocity jump across a flame
front of the order of O(MS) in terms of velocity potential.(

∂ψ (2)
c (R, t)

∂n
− ∂ψ (1)

c (R, t)

∂n
+ βX

∂ψ (2)
c (R, t)

∂t
+ βY

∂2ψ (2)
c (R, t)

∂t2

)
z=h(r,t)

= 0, (2.11)

where βX =(Λ − 1)/(c2Λ
1/2)(α/2(γ − 1) − γ )MS, βY = (Λ − 1)(γ − 1)trθ/(c2Λ

1/2)MS .
Since the normal velocity in (2.11) is ∂ψ/∂n = n ·∇ψ where n is normal to the flame

surface G = z − h(r, t) = 0, i.e.

n = ∇G/|∇G| = (1 + |∇h|2)−1/2(ez − ∇h), (2.12)

then (2.11) is led further to the form

(1 + |∇h|2)−1/2
(

∂
∂z

− ∇h · ∇
)
ψ (1)

c (R, t)|z=h(r,t)

=
[
(1 + |∇h|2)−1/2

(
∂
∂z

− ∇h · ∇
)

− βX
∂
∂t

− βY
∂2

∂t2

]
ψ (2)

c (R, t)|z=h(r,t).
(2.13)

2.3. Evaluation of the scattering amplitudes using SPM

The pressure continuity in (2.6) and the velocity jump in (2.13) are expressed as the
following forms using (2.4) and (2.5):

Pressure continuity:

ρ1

[
ω0

(
ρ1q

(1)
0

)−1/2
ei
(

k0 · r+q
(1)
0 h(r,t)−ω0t

)

+

∫
ω

∫
k

∫
ωS11(k, k0, ω, ω0)

(
ρ1q

(1)
k

)−1/2
ei
(

k · r−q
(1)
k h(r,t)−ωt

)
dk dω

]

= ρ2

∫
ω

∫
k

∫
ωS21(k, k0, ω, ω0)

(
ρ2q

(2)
k

)−1/2
ei(k · r+q

(2)
k h(r,t)−ωt) dk dω (2.14)

Velocity jump:

(1 + |∇h|2)−1/2
(
ρ1q

(1)
0

)−1/2(
q

(1)
0 − ∇h(r, t) · k0

)
ei(k0 · r+q

(1)
0 h(r,t)−ω0t) − (1 + |∇h|2)−1/2

×
∫

ω

∫
k

∫
S11(k, k0, ω, ω0)

(
ρ1q

(1)
k

)−1/2(
q

(1)
k + ∇h(r, t) · k

)
ei(k · r−q

(1)
k h(r,t)−ωt) dk dω

=

∫
ω

∫
k

∫ S21(k, k0, ω, ω0)
(
ρ2q

(2)
k

)−1/2×[
(1+|∇h|2)−1/2

(
q

(2)
k − ∇h(r, t) · k

)
+ βXω − iβY ω2

]
ei(k · r + q

(2)
k h(r,t)−ωt)

dk dω.

(2.15)

An approximate solution for the scattering amplitudes S11 and S21 in (2.14) and
(2.15) can be obtained by using perturbation method, i.e. by expanding the scattering
amplitudes in powers of h.

SN1N2 = S
N1N2

0 + S
N1N2

1 + S
N1N2

2 + O(h3), (2.16)

where SN1N2
n ∼ O(hn). Substituting (2.16) into (2.14) and (2.15) yields

ρ1

[
ω0

(
ρ1q

(1)
0

)−1/2
ei(k0 · r−ω0t)

{
1 + iq (1)

0 h(r, t) − 1

2

(
q

(1)
0 h(r, t)

)2
+ O(h3)

}

+

∫
ω

∫
k

∫
ω
(
S11

0 + S11
1 + S11

2 + O(h3)
) (

ρ1q
(1)
k

)−1/2
ei(k · r−ωt)
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×
{

1 − iq (1)
k h(r, t) − 1

2

(
q

(1)
k h(r, t)

)2
+ O(h3)

}
dk dω

]

= ρ2

∫
ω

∫
k

∫
ω
(
S21

0 + S21
1 + S21

2 + O(h3)
)(

ρ2q
(2)
k

)−1/2
ei(k · r−ωt)

×
{

1 + iq (2)
k h(r, t) − 1

2

(
q

(2)
k h(r, t)

)2
+ O(h3)

}
dk dω, (2.17)(

1 − 1

2
|∇h|2 + O(h4)

)(
ρ1q

(1)
0

)−1/2(
q

(1)
0 − ∇h(r, t) · k0

)

×
{

1 + iq (1)
0 h(r, t) − 1

2

(
q

(1)
0 h(r, t)

)2
+ O(h3)

}
ei(k0 · r−ω0t)

−
∫

ω

∫
k

∫ (
1 − 1

2
|∇h|2 + O(h4)

)(
S11

0 + S11
1 + S11

2 + O(h3)
)(

ρ1q
(1)
k

)−1/2

×
(
q

(1)
k + ∇h(r, t) · k

){
1 − iq (1)

k h(r, t) − 1

2

(
q

(1)
k h(r, t)

)2
+ O(h3)

}
ei(k · r−ωt) dk dω

=

∫
ω

∫
k

∫ (
S21

0 + S21
1 + S21

2 + O(h3)
)(

ρ2q
(2)
k

)−1/2

×
[(

1 − 1

2
|∇h|2 + O(h4)

)(
q

(2)
k − ∇h(r, t) · k

)
+ β(ω)

]

×
{

1 + iq (2)
k h(r, t) − 1

2

(
q

(2)
k h(r, t)

)2
+ O(h3)

}
ei(k · r−ωt) dk dω (2.18)

where (1 + |∇h|2)−1/2 = 1 − |∇h|2/2 + O(h4) is used and exp(iqkh(r, t)) terms are
expanded in a Taylor series by assuming a small Rayleigh parameter and a small
slope

qkh(r, t) � 1, ∇h(r, t) · k/qk � 1, (2.19)

where the second one imposes the condition that the slope of surface roughness
be smaller than the grazing angle of all incident and scattered waves. Equation
(2.19) can also be written in statistical forms in cases where random oscillations are
present.

σ̃ cosφ � 1 (small r.m.s. height), σ̃� tan φ � 1 (small slope), (2.20)

where σ̃ =K0σ (K0 = ω0/c1, σ = 〈h2〉1/2) is a non-dimensional r.m.s. height of a flame

front, and σ̃� =
√

2 σ/lc is the r.m.s. gradient (Ogilvy 1991, p. 22), and φ is a polar
angle of the incident wave. By assuming that σ̃ cosφ � 0.3, a maximum frequency
below which the present analysis applies is obtained by fmax =Kc/2π ≈ 540 Hz for
normal incidence (φ =0◦) with σ = 3 cm, c =340 m s−1. (Note that an r.m.s. flame
height of 3 cm represents a turbulent flame with a peak to peak amplitude of
about 2

√
2σ ≈ 9 cm.) This frequency range covers a considerable part of instability

frequencies that are often observed in typical gas turbine combustors (Lieuwen & Yang
2005). Collecting the terms of O(h0) in (2.17) and (2.18), multiplying exp[−i(k′ · r −
ω′t)]/(2π)3, and integrating with respect to r and t yields the zeroth order scattering
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amplitudes (Cho 2006).

S11
0 (k, k0, ω, ω0) = R(k, ω)δ(k − k0)δ(ω − ω0), R(k, ω) =

ρ2q
(1)
k − ρ1

(
q

(2)
k + β(ω)

)
ρ2q

(1)
k + ρ1

(
q

(2)
k + β(ω)

)
(2.21)

S21
0 (k, k0, ω, ω0) = D(k, ω)δ(k − k0)δ(ω − ω0), D(k, ω) =

2
(
ρ1ρ2q

(1)
k q

(2)
k

)1/2

ρ2q
(1)
k + ρ1

(
q

(2)
k + β(ω)

) ,

(2.22)

where β(ω) = βXω − iβY ω2 is a jump factor in acoustic velocity across a flame
and δ is dirac delta function. R and D denote the reflection and transmission
coefficient, respectively, from the mean flat surface. Note that the energy conservation
relationship, R2 + D2 = 1, holds in case of no jump condition (β = 0); i.e. the sum of
the reflected and transmitted energies from the mean surface is equal to the incident
energy. Similarly, collecting the terms of O(h1) in (2.17) and (2.18) leads to the solution
of the first-order scattering amplitudes after some manipulations (Cho 2006).

S11
1 (k, k0, ω, ω0) = A(k, k0, ω, ω0)h(k − k0, ω − ω0) (2.23)

S21
1 (k, k0, ω, ω0) = B(k, k0, ω, ω0)h(k − k0, ω − ω0) (2.24)

A(k, k0, ω, ω0) =
2i
(
q

(1)
0 q

(1)
k

)1/2[
ρ2q

(1)
0 + ρ1

(
q

(2)
0 + β(ω0)

)][
ρ2q

(1)
k + ρ1

(
q

(2)
k + β(ω)

)]
×
[ω0

ω
ρ1

(
q

(2)
k + β(ω)

){
(ρ2 − ρ1)q

(2)
0 − ρ1β(ω0)

}
+ ρ2α(k, k0, ω0)

]
(2.25)

B(k, k0, ω, ω0) =
2i
(
ρ1ρ2q

(1)
0 q

(2)
k

)1/2[
ρ2q

(1)
0 + ρ1

(
q

(2)
0 + β(ω0)

)][
ρ2q

(1)
k + ρ1

(
q

(2)
k + β(ω)

)]
×
[
−ω0

ω
q

(1)
k

{
(ρ2 − ρ1)q

(2)
0 − ρ1β(ω0)

}
+ α(k, k0, ω0)

]
(2.26)

α(k, k0, ω0) = ρ2

{(
ω0

c1

)2

− k · k0

}
− ρ1

{(
ω0

c2

)2

− k · k0 + q
(2)
0 β(ω0)

}
(2.27)

h(k, ω) =
1

(2π)3

∫
r

∫ ∫
t

h(r, t)e−i(k · r−ωt) dt dr. (2.28)

Equations (2.23)–(2.27) coincide with the formulae of the scattering amplitudes
that are derived by Voronovich (1999) for a stationary surface (ω = ω0) with no jump
condition in acoustic velocity (β = 0). The second-order solutions of the scattering
amplitudes can be obtained by collecting the terms of O(h2) in (2.17) and (2.18)
(see Cho 2006 for details). Note that the second-order scattering amplitudes play a
key role in demonstrating the acoustic energy balance that accounts for coherent
energy damping which is transmitted to incoherent energy production (see (2.48)
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for details).{
S11

2 (k, k0, ω, ω0)

S21
2 (k, k0, ω, ω0)

}
=

(ρ1ρ2q
(1)
k q

(2)
k )

1/2

ρ2q
(1)
k +ρ1(q(2)

k +β(ω))

×
{∫

ω′

∫
k′

∫
F (k′, k0, k, ω′, ω0, ω)h(k − k′, ω − ω′)h(k′ − k0, ω

′ − ω0) dk′ dω′∫
ω′

∫
k′

∫
G(k′, k0, k, ω′, ω0, ω)h(k − k′, ω − ω′)h(k′ − k0, ω

′ − ω0) dk′ dω′

}

(2.29)

F (k′, k0, k, ω′, ω0, ω) =

(
ρ1ρ2q

(1)
0 /q

(2)
k

)1/2

ρ2q
(1)
0 + ρ1

(
q

(2)
0 + β(ω0)

)
×
{[(

ω0

c1

)2

−
(

ω0

c2

)2
] [ω0

ω

(
q

(2)
k + β(ω)

)

−
(
q

(2)
0 + β(ω0)

)]
+ β(ω0)

[
k′ · (k − k′) + k0 · (k′ − k0)

]}

+
i(

q
(2)
k

)1/2

{
ω′

ω

(
ρ1q

(1)
k′

ρ2

)1/2 (
q

(2)
k + β(ω)

)

+

(
ρ2

ρ1q
(1)
k′

)1/2 [(
ω′

c1

)2

− k′ · k
]}

A(k′, k0, ω
′, ω0)

+
i(

q
(2)
k

)1/2

{
ω′

ω

(
q

(2)
k′

)1/2 (
q

(2)
k + β(ω)

)

−
(
q

(2)
k′

)−1/2

[(
ω′

c2

)2

− k′ · k + β(ω′)q (2)
k′

]}
B(k′, k0, ω

′, ω0), (2.30)

G(k′, k0, k, ω′, ω0, ω) =
−
(

q
(1)
0 /q

(1)
k

)1/2

ρ2q
(1)
0 +ρ1

(
q

(2)
0 +β(ω0)

){[(ω0

c1

)2

−
(

ω0

c2

)2
]

×
[

ω0

ω
ρ2q

(1)
k + ρ1

(
q

(2)
0 + β(ω0)

)]
− ρ1β(ω0)

[
k′ · (k − k′) + k0 · (k′ − k0)

]}

+ i

{
−ω′

ω

(
q

(1)
k q

(1)
k′

)1/2
+
(
q

(1)
k q

(1)
k′

)−1/2

[(
ω′

c1

)2

− k′ · k
]}

A(k′, k0, ω
′, ω0)

− i

{
ω′

ω

(
ρ2

ρ1
q

(1)
k q

(2)
k′

)1/2

+
(

ρ2

ρ1
q

(1)
k q

(2)
k′

)−1/2
[(

ω′

c2

)2

− k′ · k + β(ω′)q (2)
k′

]}
B(k′, k0, ω

′, ω0).

(2.31)

From (2.21)–(2.24) and (2.29), the scattering amplitudes with an accuracy of the
second order of flame height can now be written as

S11(k, k0, ω, ω0) =

2∑
n=0

S11
n (k, k0, ω, ω0) + O(h3)

= R(k, ω)δ(k − k0)δ(ω − ω0) + A(k, k0, ω, ω0)h(k − k0, ω − ω0)

+
1

2
D(k, ω)

∫
ω′

∫
k′

∫
F (k′, k0, k, ω′, ω0, ω)h(k − k′, ω − ω′)

× h(k′ − k0, ω
′ − ω0) dk′ dω′ (2.32)
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S21(k, k0, ω, ω0) =

2∑
n=0

S21
n (k, k0, ω, ω0) + O(h3)

= D(k, ω)δ(k − k0)δ(ω − ω0) + B(k, k0, ω, ω0)h(k − k0, ω − ω0)

+ 1
2
D(k, ω)

∫
ω′

∫
k′

∫
G(k′, k0, k, ω′, ω0, ω)h(k − k′, ω − ω′)

× h(k′ − k0, ω
′ − ω0)dk′dω′. (2.33)

2.4. Coherent and incoherent fields

Scattering from a randomly rough surface consists of coherent part which propagates
in the specular direction and incoherent part which propagates in off-specular (diffuse)
directions. Coherent field has constant and predictable phase relationship with an
incident wave while incoherent field has no fixed phase relationship with an incident
wave (Ogilvy 1991). Due to such random phase relationship of incoherent field, taking
an ensemble average of scattered fields eliminates incoherent part and, therefore, yields
mean scattered acoustic field which is coherent. For instance, taking an ensemble
average of the scattering amplitudes in (2.32) and (2.33) yields the mean reflection
and transmission quantities of scattered acoustic fields.〈

S11(k, k0, ω, ω0)
〉

= 〈V (k, ω)〉 δ(k − k0)δ(ω − ω0), (2.34)〈
S21(k, k0, ω, ω0)

〉
= 〈T (k, ω)〉 δ(k − k0)δ(ω − ω0), (2.35)

where the mean reflection and transmission coefficients are expressed as

〈V (k, ω)〉 = R(k, ω) +
1

2
D(k, ω)

∫
ω′

∫
k′

∫
F (k′, k0, k, ω′, ω0, ω)W (k − k′, ω − ω′) dk′ dω′

(2.36)

〈T (k, ω)〉 = D(k, ω)

[
1 +

1

2

∫
ω′

∫
k′

∫
G(k′, k0, k, ω′, ω0, ω)W (k − k′, ω − ω′) dk′ dω′

]
.

(2.37)

Equations (2.34) and (2.35) imply that the mean scattering waves propagate in the
specular direction, k = k0, with the incident wave frequency, ω = ω0. Note in (2.36) and
(2.37) that the mean scattering coefficients 〈V 〉 and 〈T 〉 differ from the reflection and
transmission coefficients from the mean plane surface, R and D, by the second-order
terms. These second-order terms account for coherent energy damping due to surface
roughness. On the other hand, the incoherent field can be obtained by estimating the
second moment of the scattering amplitudes 〈�S11�S11〉 (�S11 is the fluctuation in
the scattering amplitude), which describes incoherent energy production (see § 3 for
detailed analysis). W in (2.36) is the power spectral density of flame front height,
which is defined as Fourier transform of the correlation function of flame front height
(Meirovitch 1971, p. 490). Note that W is related to flame height statistics in the
form

〈h(k1, ω1)h(k2, ω2)〉 = W (k1, ω1)δ(k1 + k2)δ(ω1 + ω2) (2.38)

which is an extended version of that in Voronovich (1999, p. 80) and can be proved
by using the correlation function

�

W (ξ , η) (ξ = r1 − r2, η = t1 − t2), which is a function
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of ξ and η only in case of spatially homogeneous and temporally stationary statistics.

�

W (ξ , η) = 〈h(r 1, t1)h(r 2, t2)〉

=

〈∫
k1

∫ ∫
ω1

h(k1, ω1)e
i(k1 · r 1−ω1t1) dω1 dk1 ×

∫
k2

∫ ∫
ω2

h(k2, ω2)e
i(k2 · r 2−ω2t2) dω2 dk2

〉

=

∫
k1

∫ ∫
ω1

∫
k2

∫ ∫
ω2

〈h(k1, ω1)h(k2, ω2)〉 ei[k1 · ξ−ω1η+(k1+k2) · r 2−(ω1+ω2)t2]dω2dk2 dω1 dk1,

(2.39)

where (k1 + k2) · r 2 − (ω1 + ω2)t2 in the exponential term should vanish in order
for

�

W (ξ , η) to be a function of ξ and η only. This implies that 〈h(k1, ω1)h(k2, ω2)〉
should vanish unless k1 + k2 = 0 and ω1 + ω2 = 0, which leads to (2.38) by comparing

(2.39) with
�

W (ξ , η) =
∫

k1

∫ ∫
ω1

W (k1, ω1)e
i(k1 · ξ−ω1η)dω1dk1. In case of pressure release

condition (ρ2/ρ1 → 0) at a stationary surface (ω = ω0) with no velocity jump (β = 0),
the mean reflection coefficient in (2.36) is reduced to the form

〈V (k0, ω0)〉β=0 = −1 + 2q
(1)
0

∫
k′

∫
q

(1)
k′ W (k0 − k′) dk′ (2.40)

which is equivalent to the expression from Voronovich (1999, p. 80).

2.5. Formulation of the scattered acoustic energy budget

An averaged acoustic energy of scattered waves can be evaluated from (A 6) (see
appendix A). Comparing (A 4) with the reflected acoustic pressure and velocity fields
in (2.2)–(2.4) yields the complex amplitudes of acoustic pressure and velocity

P (k, ω, z) =
ω

ω0

(
q

(1)
0

q
(1)
k

)1/2

S11(k, k0, ω, ω0)e
−iq

(1)
k z

V (k, ω, z) = εc1

ω0

(
q

(1)
0

q
(1)
k

)1/2

S11(k, k0, ω, ω0)K (1)
− e−iq

(1)
k z(ε = |PI |

/
(ρ1c

2
1), K (1)

− = (kx, ky, −q
(1)
k ))

(2.41)
which are substituted into (A 6) to yield the ensemble-averaged energy flux using the
correlation function of the scattering amplitudes.〈

S11(k, k0, ω, ω0)S
11(−k′, k0, −ω′, ω0)

〉
=
〈
S11

(k,k0,ω,ω0)

〉 〈
S11

(−k′,k0,−ω′,ω0)

〉
+
〈
�S11

(k,k0,ω,ω0)
�S11

(−k′,k0,−ω′,ω0)

〉
= 〈V (k, ω)〉

〈
V (−k′, −ω′)

〉
δ(k − k0)δ(ω − ω0)δ(k

′ + k0)δ(ω
′ + ω0)

+A(k, k0, ω, ω0)A(−k′, k0, −ω′, ω0)W (k − k0, ω − ω0)δ(k − k′ − 2k0)

× δ(ω − ω′ − 2ω0) + O(h3), (2.42)〈
S11(k, k0, ω, ω0)S

11∗(k′, k0, ω
′, ω0)

〉
= 〈V (k, ω)〉

〈
V ∗(k′, ω′)

〉
δ(k − k0)δ(ω − ω0)δ(k

′ − k0)δ(ω
′ − ω0)

+A(k, k0, ω, ω0)A
∗(k′, k0, ω

′, ω0)W (k − k0, ω − ω0)δ(k − k′)

× δ(ω − ω′) + O(h3), (2.43)

where the fluctuation in the scattering amplitude

�S11
(k,k0,ω,ω0)

= S11(k, k0, ω, ω0) −
〈
S11(k, k0, ω, ω0)

〉
= A(k, k0, ω, ω0)h(k − k0, ω − ω0) + O(h2) (2.44)
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was used together with (2.38) and h∗(k, ω) = h(−k, −ω) (superscript * denotes the
complex conjugate). Then the reflected energy in unit area of the mean flame surface
normalized by the incident energy flux Iav,I · n( = εc1q

(1)
0 /(2ω0)) can be obtained with

an accuracy of O(h2) from (2.41)–(2.43) and (A 6).

ER = 〈Iav〉R · (−n)/Iav,I · n = |〈V (k0, ω0)〉|2 +

∫
ω

∫
|k|<|ω|/c1

∫
σR(k, k0, ω, ω0) dk dω

(2.45)

where the first term represents coherent energy of the scattering waves reflected
in the specular direction while the second term represents incoherent energy due
to flame surface wrinkling. That incoherent energy takes on an integral form
implying that the waves contributing to the incoherent energy are characterized
by a broad range of propagation directions and frequencies. The integrand in
the second term is the reflected scattering cross-section defined as σR(k, k0, ω, ω0) =
(ω/ω0) |A(k, k0, ω, ω0)|2 W (k − k0, ω − ω0). The transmitted acoustic energy can be
evaluated in a similar manner to yield

ET = 〈Iav〉T · n/Iav,I · n =
Re(q (2)

0 )∣∣q (2)
0

∣∣ |〈T (k0, ω0)〉|2 +

∫
ω

∫
|k|<|ω|/c2

∫
σT (k, k0, ω, ω0) dk dω,

(2.46)

where σT (k, k0, ω, ω0) = (ω/ω0)|B(k, k0, ω, ω0)|2W (k − k0, ω − ω0) is the transmitted
scattering cross-section. Total acoustic energy after scattering can then be obtained by
combining (2.45) and (2.46).

Etotal = Eco + Einc (2.47)

where

Eco = |〈V (k0, ω0)〉|2 + Re
(
q

(2)
0 /

∣∣q (2)
0

∣∣)|〈T (k0, ω0)〉|2

= |R(k0, ω0)|2 +
Re(q (2)

0 )∣∣q (2)
0

∣∣ |D(k0, ω0)|2 +

∫
ω

∫
k

∫
Re [H (k, k0, ω, ω0)]

× W (k0 − k, ω0 − ω) dk dω,

Einc =

∫
ω

∫
|k|<|ω|/c1

∫
σR(k, k0, ω, ω0) dk dω+

∫
ω

∫
|k|<|ω|/c2

∫
σT (k, k0, ω, ω0) dk dω.

Ecoand Einc denote coherent and incoherent energies, and the H term is of the form

H (k, k0, ω, ω0) = R∗(k0, ω0)D(k0, ω0)F (k, k0, k0, ω, ω0, ω0)

+Re
(
q

(2)
0 /

∣∣q (2)
0

∣∣) |D(k0, ω0)|2 G(k, k0, k0, ω, ω0, ω0)

which describes coherent energy damping that arises from the energy transfer from
coherent to incoherent field due to flame surface wrinkling. Since acoustic energy
is produced or damped either by the acoustic velocity jump due to unsteady heat
release or by unsteady motion of flame, neglection of these unsteady effects, i.e.
β = 0 and ω =ω0, should manifest the acoustic energy balance, which states that the
scattered acoustic energy is equal to the original energy from incident waves. Some
manipulation can in fact show that coherent energy damping (the H term in Eco) is
the counterpart of incoherent energy production (the σ terms in Einc) in (2.47) by
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proving the following identities (Cho 2006):

− Re [H (k, k0, ω0, ω0)]β=0

= Re
(
q

(1)
k /

∣∣q (1)
k

∣∣) |A(k, k0, ω0, ω0)|2β=0 + Re
(
q

(2)
k /

∣∣q (2)
k

∣∣) |B(k, k0, ω0, ω0)|2β=0

= D2(k0, ω0)

{
q

(2)
0

(
1−ρ1

ρ2

)2

Re

[
ρ2q

(1)
k q

(2)
k

ρ2q
(1)
k +ρ1q

(2)
k

]
+

α2(k, k0, ω0)

ρ1q
(2)
0

Re

[
1

ρ2q
(1)
k +ρ1q

(2)
k

]}
β=0

,

(2.48)

where the last expression is non-negative, which implies the one-way energy transfer
from coherent to incoherent field; i.e. incoherent energy is produced (positive) at
the expense of coherent energy damping (negative) by a wrinkled surface if neither
velocity jump nor unsteady surface motion is considered. Equation (2.48) leads (2.47)
to the acoustic energy balance in case of no unsteady effects.

Etotal |no−unsteady = |R(k0, ω0)|2β=0 + |D(k0, ω0)|2β=0 = 1. (2.49)

In case of pressure release condition (ρ2/ρ1 → 0) with no unsteady effects, (2.47)
can be expressed as the form by using 〈T (k0, ω0)〉β =0 → 0

|〈V (k0, ω0)〉|2β=0 + 4q
(1)
0

∫ ∫
|k|<ω0/c1

q
(1)
k W (k − k0) dk = 1 + O(h3) (2.50)

which is equivalent to the expression from Voronovich (1999, p. 81). Net acoustic
energy after scattering can then be evaluated by

�E = Etotal − 1 = �Eco + �Einc (2.51)

�Eco = |〈V (k0, ω0)〉|2 − |R(k0, ω0)|2β=0 + Re
(
q

(2)
0 /

∣∣q (2)
0

∣∣) |〈T (k0, ω0)〉|2 − |D(k0, ω0)|2β=0

(2.52)

�Einc =

∫
ω

∫
|k|<|ω|/c1

∫
σR(k, k0, ω, ω0) dk dω+

∫
ω

∫
|k|<|ω|/c2

∫
σT (k, k0, ω, ω0) dk dω,

(2.53)

where �Eco and �Einc denote net coherent and incoherent energies, respectively.
Note that the second and the fourth terms in (2.52) are combined to yield −1 by
(2.49). Leaving these terms separated is to distinguish the reflected coherent energy,
i.e. the first two terms on the right-hand side in (2.52), from the transmitted one,
i.e. the last two terms. Since net energy can be attributed to two factors such as the
acoustic velocity jump due to unsteady heat release and the unsteady motion of flame
wrinkling (as for unsteady motion effect, see also Crighton et al. 1992, chapter 14,
which describes how a source in unsteady motion modifies the amplitude of sound
field), coherent energy is further broken into the form

�Eco = �J (Eco) + �w(Eco), (2.54)

where the first term is due to the acoustic velocity jump

�J (Eco) = |〈V (k0, ω0)〉|2 − |〈V (k0, ω0)〉|2β=0

+Re
(
q

(2)
0 /

∣∣q (2)
0

∣∣)(|〈T (k0, ω0)〉|2 − |〈T (k0, ω0)〉|2β=0

)
,
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and the second term is due to the flame wrinkling, which accounts for both temporal
(unsteady motion) and spatial wrinkling of flame fronts

�w(Eco) =

∫
ω

∫
k

∫
Re

[
Hβ=0(k, k0, ω, ω0)

]
W (k0 − k, ω0 − ω) dk dω.

Net incoherent energy is also attributed to the velocity jump and the wrinkling
effects.

�Einc = �J (Einc) + �w(Einc) (2.55)

�J (Einc) =

∫
ω

∫
|k|<|ω|/c1

∫
[σR(k, k0, ω, ω0) − σR(k, k0, ω, ω0)β=0] dk dω

+

∫
ω

∫
|k|<|ω|/c2

∫
[σT (k, k0, ω, ω0) − σT (k, k0, ω, ω0)β=0] dk dω,

�w(Einc) =

∫
ω

∫
|k|<|ω|/c1

∫
σR(k, k0, ω, ω0)β=0 dk dω

+

∫
ω

∫
|k|<|ω|/c2

∫
σT (k, k0, ω, ω0)β=0 dk dω.

3. Results and discussions
3.1. Non-dimensional parameters for the acoustic energy budget under the Gaussian

statistics of flame height

The formulations for acoustic energy budget derived in the previous section are
generalized ones in a sense that they are expressed in terms of the flame height
correlation function W that allows any specific description of flame height statistics
regardless of whether it follows a standard Gaussian statistics or not. (As for the
correlation function, see (2.38) and its related context.) The flame height statistics
in this section is assumed to follow the Gaussian characteristics to exemplify a
quantitative demonstration of net acoustic energy budget. The flame height correlation
function with the Gaussian distribution is of the form

�

W (ξ , η) = 〈h(r 1, t1)h(r 2, t2)〉 = σ 2e−|ξ |2/l2c −η2/t2c (ξ = r1 − r2, η = t1 − t2), (3.1)

where the correlation length lc represents how far a signal, i.e. flame height, spreads its
influence to its neighbouring points while the correlation time tc represents how long
a signal keeps its information in a subsequent time. In other words the correlation
length controls a spatial variation of flame height along the surface and a larger
lc makes less spatial variation of flame height along the flame surface while the
correlation time controls the rate of change of flame height with time and a larger tc
makes less temporal variation of flame height at a given location of flame surface.

Equation (3.1) leads the power spectrum of flame height to the form

W (k, ω) =
1

(2π)3

∫
ξ

∫ ∫
η

�

W (ξ , η)e−i(k · ξ−ωη) dη dξ =
σ 2tcl

2
c

8π3/2
e−[(ωtc)

2+(|k|lc)2]/4 (3.2)

which implies that a Gaussian correlation function yields a Gaussian power spectrum.
Note that if a surface is stationary, the correlation time goes to infinity (tc → ∞).
Hence

W (k, ω) = W (k)δ(ω) with W (k) =
(σ lc)

2

4π
e−(|k|lc)2/4 (3.3)
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using (tc/
√

π) exp[−(ωtc)
2] → δ(ω) as tc → ∞ (Kevorkian 2000, p. 580). Calculation of

net acoustic energy requires triple integrations over k and ω, as seen in (2.47). With
the flame height statistics following the Gaussian distribution as in (3.1), such triple
integrations can be reduced to double integrations by utilizing a polar transform,
kx = k cos θ and ky = k sin θ . For instance, using a polar transform for the integration
of FW in (2.47) yields:

D(k0, ω0)

∫
ω

∫
k

∫
F (k, k0, k0, ω, ω0, ω0)W (k0 − k, ω0 − ω) dk dω

=
2q̃

(1)
0 σ̃ 2

Λ[Λ−1q̃
(1)
0 +q̃

(2)
0 +β̃(ω̃0)]

2

×

⎡
⎢⎢⎢⎢⎣

− 4β̃(ω̃0)

l̃2c
+ l̃2c e−(k̃0 l̃c )2/4

4π1/2 ×
∫ ∞

ω=−∞

∫ ∞
k=0

⎛
⎝2C̃10(k, ω)I0(kk̃0 l̃

2
c /2)+2kk̃0C̃11(k, ω)I1(kk̃0 l̃

2
c /2)

+(kk̃0)
2C̃12(k, ω)

[
I0(kk̃0 l̃

2
c /2) + I2(kk̃0 l̃

2
c /2)

]
⎞
⎠ke−[(kl̃c)

2+(ω̃0−ω)2]/4 dk dω

⎤
⎥⎥⎥⎥⎦

(3.4)

where coefficients C̃10, C̃11, C̃12 are functions of k, ω, β, Λ

C̃10(k, ω)

= χ−1

⎛
⎜⎜⎝
[
(1 − Λ−1)q̃ (2)

0 + β̃(ω̃0)
](q̃

(1)
k

(
q̃

(2)
0 + β̃(ω̃0)

)[
(Λ − 1)q̃ (2)

k + Λβ̃(ω)
]

+ ω
ω̃0

χ + ω̃0

ω
β̃(ω)q̃ (1)

k q̃
(2)
k

)

+q̃
(2)
0 β̃(ω̃0)

[
ω
ω̃0

(
q̃

(1)
k + q̃

(2)
k

)(
q̃

(2)
0 + β̃(ω̃0)

)
− q̃

(2)
k β̃(ω)

]
⎞
⎟⎟⎠ ,

(3.5)

C̃11(k, ω)

= χ−1

(
(1 − Λ−1)

[
q̃

(2)
0 β̃(ω̃0) + q̃

(2)
k β̃(ω) − ω

ω̃0

(
q̃

(1)
k + q̃

(2)
k

)(
q̃

(2)
0 + β̃(ω̃0)

)]
− ω̃0

ω

[
(1 − Λ−1)q̃ (2)

0 + β̃(ω̃0)
](

q̃
(1)
k + q̃

(2)
k + β̃(ω)

)
)

,

C̃12(k, ω) = −(1 − Λ−1)2χ−1, χ(k, ω) = Λ−1q̃
(1)
k + q̃

(2)
k + β̃(ω)

q̃
(1)
0 =

(
1 − k̃2

0

)1/2
, q̃

(2)
0 = (Λ−1 − k̃2

0)
1/2, q̃

(1)
k =

[(
ω

ω̃0

)2

− k2

]1/2

,

q̃
(2)
k =

[
Λ−1

(
ω

ω̃0

)2

− k2

]1/2

β̃(ω) =
ω

ω̃0

[
α
2
(γ − 1) − γ − i(γ − 1)θτω

]
(1 − Λ−1)MS.

Equation (3.4) introduces five non-dimensional parameters: the r.m.s. flame height
σ̃ ( = K0σ ), the correlation length of flame height l̃c (= K0lc), the frequency ratio
f̃ 0 (= ω̃0/(2π) = f0/fc) (fc =1/tc: correlation frequency of flame surface), the time
ratio of the flame’s diffusion to correlation time τ (= tr/tc), the polar angle of
incidence φ

(1)
0 (= arcsin k̃0 with k̃0 = k0/K0).
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Figure 2. Dependence of the reflected and transmitted acoustic energy upon the incidence
angle (σ̃ = 0.3, l̃c = 2, f̃ 0 = τ = 0.1; J : jump effect, W : wrinkling effect).

3.2. Numerical simulation of the scattered acoustic energy budget

The integrals in (2.54) and (2.55) were all converted to double integrals, as
demonstrated in the previous section, and then numerically integrated using
Mathematica to illustrate the characteristics of the scattered acoustic energy budget
such as the reflected energy versus transmitted energy, coherent energy versus
incoherent energy due to the jump effect versus wrinkling effect. The accuracy of
numerical integrations was controlled and checked by the ‘digits of precision’. Setting
the digits of precision to five or higher guaranteed that the numerically integrated
values converge with a normalized variation of less than 10−4. The integral range of
−∞ <ω < ∞ was approximated by ω̃0 − �ω <ω < ω̃0 + �ω as the integrals have the
exp[−(ω̃0 − ω)2/4] dependence which decays exponentially with ω2. Using �ω = 35 or
higher guaranteed that the integration stays within a normalized variation of 10−4.
Accordingly, the calculation that follows used �ω =35. Similarly, the integral range
over k is approximated by 0 � k � �ω/̃lc since kl̃c corresponds to ω − ω̃0 as seen in
exp{−[(kl̃c)

2+(ω̃0 −ω)2]/4}. The dimensionless parameters have the ranges of σ̃ � 0.3,
l̃c � 1.5, 0◦ � φ0 � 40◦, based on the restrictions on the flame height and slope in (2.20).
f̃ 0(=f0/fc) and τ (= tr/tc) range from 0.1 to 10 to examine the relative importance
between f0 and fc or between tr and tc, respectively. The variables for β (the jump
factor) in (3.5) take on the values of α = 2, γ =1.4, θ = 10, Λ = 6, MS = 0.001.

Figure 2(a) shows the dependence of the reflected and transmitted energies upon
the incidence angle with and without the unsteady effects of jump, denoted by ‘J ’,
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and wrinkling, denoted by ‘W ’. The case without the unsteady effects represents
a typical wave reflection and transmission behaviour. The reflected energy displays
about 18 % of the incidence energy at normal incidence (φ0 = 0◦), and decreases with
increasing the incidence angle (deviating more from normal incidence) until it reaches
the Brewster angle at about 22◦ where no reflection occurs. (The Brewster angle is
given by φB = arctan(Λ−1/2) = 22.2◦.) The reflected energy then increases dramatically
beyond the Brewster angle until it reaches the critical angle at about 24◦, beyond
which all the energy is reflected. (The critical angle is given by φcr = arcsin(Λ−1/2) =
24.1◦.) The unsteady effects of the jump and wrinkling, however, cause the energy
amplification and/or damping that modifies the reflected and transmitted acoustic
energy as shown in figure 2(a).

Net coherent and incoherent energies are shown in figures 2(b) and 2(c). Figure 2(b)
shows that the coherently reflected energy is damped at off-critical angles, i.e. the
angles which are more than about 1◦ distant from the critical angle. Coherent damping
of the reflected energy at normal incidence is about 8 % of the incidence energy and is
then gradually reduced with an increasing incidence angle until the coherent damping
is switched to coherent amplification near the critical angle. This coherent damping at
subcritical angles, i.e. below the critical angle, appears to be more or less proportional
to the original reflection energy, i.e. the ‘w/o (J + W )’ curve shown in figure 2(a). In
other words, a nearly constant portion of the reflection energy is damped due to the
unsteady effects.

Coherent amplification of the reflected energy near the critical angle in figure 2(b)
is thought to result from the influence by the behaviour at the Brewster angle which
is near the critical angle. At the Brewster angle the reflection energy can never be
further damped since all the energy is already transmitted (across a plane surface) at
the Brewster angle by its definition. Thus net reflection energy scattered by a wrinkled
surface can only be produced. Such net energy production holds for its neighbouring
angles including the critical angle in this study. Note that no coherent energy is
transmitted beyond the critical angle as is the case of the transmission through a
plane surface.

Figure 2(c) shows that incoherent energy is always produced for both reflected
and transmitted fields. Note that some incoherent energy is still transmitted even at
supercritical angles, i.e. beyond the critical angle, as opposed to zero transmission
of coherent energy at supercritical angles as shown in figure 2(b). This is due to
the fact that surface wrinkling, which produces incoherent energy, sometimes makes
a local incidence angle subcritical even when the incidence angle from the mean
surface is supercritical. These locally made subcritical angles allow some waves to be
transmitted. Note also in figures 2(b) and 2(c) that coherent damping and incoherent
production at supercritical angles are more pronounced than those at subcritical
angles. This implies that a more oblique incident wave (with a supercritical incidence
angle), which is disturbed transversely by the up-and-down motion (in an average
sense) of a wrinkled flame, is more effectively scattered to damp coherent energy
into incoherent energy than a less oblique incident wave (with a subcritical incidence
angle) which is disturbed rather longitudinally.

The detailed energy budget is summarized in figure 3, which illustrates dominant
processes that amplify and/or damp acoustic energy by the interaction with a
turbulent flame. Net acoustic energy is caused by two effects: one is the acoustic
velocity jump effect due to the flame’s unsteady heat release, and the other is
the wrinkling effect due to the flame’s unsteady motion. Note that the wrinkling
effect consists of two factors: temporal wrinkling and spatial wrinkling. Temporal
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Figure 3. Dominant processes for amplification and/or damping of acoustic energy by the
interaction with a turbulent flame.
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Figure 4. Acoustic energy balance for a stationary wrinkling surface (σ̃ = 0.3, l̃c = 2, β̃ = 0).

wrinkling is associated with unsteady motion of flame surface while spatial wrinkling
is associated with spatial variation of a wrinkled surface that causes energy transfer
from coherent to incoherent energy. Thus, spatial wrinkling redistributes acoustic
energy between coherent and incoherent fields and does not alter total energy, as
shown in figure 4 where (�E)spatial denotes net energy change of a spatially wrinkled
but stationary surface with no heat release.

Note also in figure 4 (and subsequent figures) that the peaks, i.e. discontinuities in
slope, at the critical angle are caused by the cut-off phenomena where no wave is
transmitted. It is mathematically explained by the fact that a vertical wavenumber
q̃

(2)
0 in (3.5) is a real value for a subcritical angle but becomes an imaginary value for

a supercritical angle. In other words, the argument of q̃
(2)
0 makes a jump from 0◦ to

90◦ in a complex domain when crossing the critical angle, and this jump in argument
causes the peaks at the critical angle (this discontinuous behaviour was also observed
in the high-frequency acoustic wave analysis by Lieuwen & Cho 2005).

Figure 5 shows net total energy due to the jump and wrinkling effects and respective
contributions from coherent and incoherent fields. Figure 5(a) shows that coherent
energy is damped and incoherent energy is amplified for the entire range of the
incidence angle. It also shows that total energy is significantly damped for a small
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frequency ratio (f̃ 0 = 0.1) at off-critical angles. Such damping is caused by the
wrinkling effect as shown in figure 5(c). (Note that the wrinkling effect here is temporal
wrinkling, not spatial wrinkling as explained previously.) Total energy amplification
near the critical angle for f̃ 0 = 0.1 is, however, attributable almost equally to the jump
and the wrinkling effects, as shown in figures 5(b) and 5(c).

Figure 5(a) also shows that, for a larger frequency ratio (= 1, 10), net total energy
becomes much smaller and less sensitive to the incidence angle. This is because the
wrinkling effect is greatly suppressed compared to the case of f̃ 0 = 0.1 as shown in
figure 5(c). Such dominance of the wrinkling effect to the jump effect for a small
frequency ratio arises from the fact that a smaller frequency ratio (= f0/fc) yields a
larger characteristic frequency of a flame surface fc leading to an enhanced wrinkling
effect. With large frequency ratios (= 1, 10), however, the jump effect is comparable
or dominant to the wrinkling effect as the wrinkling effect is greatly reduced while
the jump effect varies little as shown in figure 5(b). These figures also show that
the jump effect acts as a source of acoustic energy amplification for the entire range
of the incidence angle while the wrinkling effect acts as a source of damping for
almost entire range of the incidence angle except for the near-critical angle where
amplification occurs.
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Figure 6. Dependence of net acoustic energy upon the flame’s r.m.s. height as a function of
the incidence angle (f̃ 0 = τ = 0.1, l̃c = 2).

Figure 6 shows how net acoustic energy varies with the flame’s r.m.s. height. It
is observed that net total, coherent and incoherent energies vary with the square of
the r.m.s. height. (Note that coherent and incoherent energies in (2.47) have a linear
dependence on the power spectrum W , which is proportional to the square of the r.m.s.
height as in (3.2).) Figure 6(a) shows that, when some wrinkling exists (σ̃ > 0), net
total energy is amplified near the critical angle and damped at off-critical angles. For
a flat surface with no roughness (σ̃ = 0), net total energy is still produced by the jump
effect due to unsteady heat release. Such net energy is purely coherent as a flat surface
produces no incoherent energy, as shown in figure 6(c). This coherent amplification
near the critical angle for a flat surface was also demonstrated by Lieuwen & Cho
(2005, figure 10). With increasing r.m.s. height, the coherent damping and incoherent
production, as shown in figures 6(b) and 6(c), are augmented as the energy transfer
from coherent field to incoherent field is more facilitated due to enhanced surface
roughness. Incoherent production is more significant at supercritical angles than at
subcritical angles in figure 6(c) as explained in figure 2.

Figure 7 shows the dependence of net energy upon the frequency and time ratios
for a subcritical incidence angle, 10◦. Maximum damping of 10 % occurs at f̃ 0 = 0.1,
as shown in figure 7(a), which results from 12 % of coherent damping and 2 % of
incoherent production, as shown in figures 7(b) and 7(c). Such damping at a small
frequency ratio ( < 1) is mainly due to the wrinkling effect with a negligible jump
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effect, as shown in figures 7(d ) and 7(e). This follows from the same reasoning as
made for figure 5; i.e. a smaller frequency ratio not only yields a relatively higher
oscillation of a flame surface (fc >f0) which enhances unsteady wrinkling effect,
but it also yields a smaller value of a jump factor β , because of β̃(ω̃0) ∼ f̃ 0 from
(3.5), leading to a smaller jump effect. The jump effect, however, becomes more
pronounced on both coherent and incoherent energies for larger frequency ratios
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Figure 7. Dependence of net energy upon f̃ 0 and τ at a subcritical angle
(σ̃ = 0.3, l̃c =1.5, φ0 = 10◦).

( > 1), as shown in figure 7(d ), especially for a large time ratio τ because more heat
is released with an increase in the diffusion time of flame.

For a frequency ratio of O(1), net total energy is negligibly small in figure 7(a)
because coherent damping is almost as large as incoherent production as shown in
figures 7(b) and 7(c). Coherent energy is damped in most regions except for the
largest frequency and time ratios (f̃ 0 ≈ 10, τ ≈ 10) in figure 7(b), and incoherent
energy is also produced most for the largest frequency and time ratios as shown
in figure 7(c). Such incoherent energy production exhibits a noticeable increase and
subsequent saturation with frequency and time ratios greater than O(1). In figures
7(d ) and 7(e) the jump effect dominates the wrinkling effect when the frequency ratio
�1, acting as a source of amplification in net total energy, while the wrinkling effect
dominates the jump effect when the frequency ratio is less than 1, acting as a source
of damping.

It is noteworthy to compare the calculated incoherent energy in figure 7(c) with
the experimental data reported by Lieuwen et al. (2002) as shown in figure 8. They
performed measurements of acoustic wave scattering from a rim-stabilized turbulent
premixed flame. Figure 8(a) shows the power spectral density (PSD) of the sidebands
of the scattered acoustic fields where the sidebands become wider with driving
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(incident) frequency fdrive . The generation of sidebands with a broadband spectrum
is attributable to the Doppler frequency shift due to random oscillation of turbulent
flame surfaces. Figure 8(b) shows the dependence of incoherent scattered power upon
an incident frequency. The incoherent scattered power was obtained by evaluating the
area under the PSD in the relevant spectral region from figure 8(a) with normalization
by the power at fdrive = 15 kHz. The incoherent scattered power is increased and
saturated with driving frequency, which shows a qualitative agreement with the
pattern delineated by the calculated incoherent energy in figure 7(c) even though this
experimental data was measured at a rather higher frequency range which is beyond
the applicable regime of the present analysis.

Figure 9 illustrates correlation between net coherent and incoherent energies. The
case of f̃ 0 = 10 in figure 9(a) displays a linear correlation with a slope of −1, which
implies that, for a large frequency ratio, total energy varies little with the incidence
angle and the correlation length. On the other hand, the case of f̃ 0 = 0.1 in figure
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9(b) displays a poor correlation, which implies that net total energy varies much
with the incidence angle and the correlation length for a small frequency ratio (see
figure 5(a) where net total energy varies little with the incidence angle at f̃ 0 = 10
while it varies significantly at f̃ 0 = 0.1). Figure 10 shows the effect of temperature
ratio upon net total energy. The peak in net total energy occurs at a lower incidence
angle with a larger temperature ratio because the critical angle decreases with an
increasing temperature ratio. Also note that a larger temperature ratio enhances
energy amplification as well as damping, i.e. amplification at the critical angle and
damping at off-critical angles are both enhanced with an increasing temperature ratio.

4. Concluding remarks
Acoustic wave–turbulent flame interactions in the long-wavelength regime were

analysed using SPM up to the second order to derive the generalized formulations
of net coherent and incoherent acoustic energies for the reflected and transmitted
scattered fields. Net acoustic energy is caused by two effects: (i) the acoustic velocity
jump due to the flame’s unsteady burning rate and (ii) the flame’s wrinkling due to
its unsteady motion. (Thus, acoustic energy is conserved in the case of no unsteady
effects considered.) Five dimensionless parameters that govern net acoustic energy
were derived based on the Gaussian statistics for flame height: the r.m.s. height and the
correlation length of flame front, the frequency ratio of the incidence frequency to the
flame’s correlation frequency, the time ratio of the flame’s diffusion to correlation time
and the incidence angle. Acoustic energy amplification occurs for a large frequency
ratio and time ratio (�1) while damping occurs for a small frequency ratio (�1) at
off-critical incidence angles. Total acoustic energy is always amplified near the critical
angle. However, little change in total acoustic energy was observed for a frequency
ratio of O(1). The relative contribution of the jump effect (due to unsteady heat
release) and the wrinkling effect (due to unsteady motion) to net total energy is
controlled mainly by the frequency ratio: the jump effect dominates the wrinkling
effect when the frequency ratio �1, acting as a source of amplification in net total
energy, while the wrinkling effect dominates the jump effect when the frequency ratio
�1, acting as a source of damping except for the near-critical incidence angle where
the wrinkling effect also amplifies acoustic energy. Acoustic energy amplification
and/or damping is augmented with increasing r.m.s. height and temperature ratio.
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The energy transfer from coherent to incoherent energy is due to the flame surface
wrinkling and is enhanced with the square of the flame’s r.m.s. height. Future works
will incorporate into the present analysis the vortex – turbulent flame interactions to
examine the effect of vortical fluctuations excited at the flame on the coherent and
incoherent acoustic energies amplification and/or damping.

The author would like to give a grateful acknowledgement to Professor Tim C.
Lieuwen at Georgia Institute of Technology for his fruitful comments and discussions
with constant encouragement.

Appendix A. Formulation of averaged quantities
A time-averaged intensity of multi-frequency waves, i.e. p(t) = Re[

∫
ω
P (ω)e−iωtdω]

and v(t) = Re[
∫

ω
V (ω)e−iωtdω], can be evaluated by

Iav time = lim
T →∞

1

T

∫ T/2

−T/2

p(t)v(t)dt

=
1

4

∫
ω

∫
ω′

P (ω)

[
V (ω′)

(
lim
T →∞

1

T

∫ T/2

−T/2

e−i(ω+ω′)tdt

)
+ V ∗(ω′)

×
(

lim
T →∞

1

T

∫ T/2

−T/2

e−i(ω−ω′)tdt

)]
dω′dω + Complex Conjugate

=
1

4

∫
ω

P (ω)

(∫
ω′→−ω

V (ω′)dω′ +

∫
ω′→ω

V ∗(ω′)dω′
)

dω + Complex Conjugate

=
1

2
Re

{∫
ω

P (ω)

(∫
ω′→ω

[
−V (−ω′) + V ∗(ω′)

]
dω′

)
dω

}
(A 1)

where the following equation is used:

lim
T →∞

1

T

∫ T/2

−T/2

e−2iωtdt =

{
limT →∞

sin(ωT )
ωT

= 1 (ω = 0)
0 (ω �= 0)

(A 2)

For waves of discrete frequencies, i.e. P (ω) =
∑

m Pmδ(ω − ωm) and V (ω) =∑
n V nδ(ω − ωn), (A 1) leads to

Iav time =
1

2

∑
m

∑
n

Re

{∫
ω

Pmδ(ω − ωm)
(
−V nδω(−ωn) + V ∗

nδωωn

)
dω

}

=
1

2

∑
m

∑
n

Re
{
Pm

(
−V nδωm(−ωn) + V ∗

nδωmωn

)}
=

1

2

∑
n

Re(PnV ∗
n) (A 3)

which is a well-known formulation. Note that Kronecker’s delta function, δωωn
, results

from the fact that
∫

ω′→ω
δ(ω′ − ωn)dω′ = 1 for ω = ωn, or 0 for ω �= ωn.

Similarly, for multi-frequency and multi-directional waves expressed as

p̃(R, t) = Re

[∫
ω

∫
k

∫
P (k, ω, z)ei(k · r−ωt) dk dω

]
, (A 4)

ṽ(R, t) = Re

[∫
ω

∫
k

∫
V (k, ω, z)ei(k · r−ωt) dk dω

]
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with p̃ =p/ |PI | and ṽ = v/c1, a time and surface-averaged intensity is of the form

Iav = lim
A,T →∞

1

AT

∫
|x|,|y|�

√
A/2

∫ T/2

−T/2

p̃(R, t)ṽ(R, t) dt dr

=
1

2
Re

{∫
ω

∫
k

∫
P (k, ω, z)

[∫
ω′→ω

∫
k′→k

∫
(−V (−k′, −ω′, z)

+ V ∗(k′, ω′, z)) dk′ dω′] dk dω
}

(A 5)

where the surface average is taken over a mean flame surface. Note that (A 5) is
valid for both deterministic and random variables of P and V . For a random field,
e.g. scattered by a randomly moving surface which makes the scattered pressure and
velocity also random, its stochastic characteristics can be described by utilizing the
ensemble average.

〈Iav〉 =
1

2
Re

{∫
ω

∫
k

∫ [∫
ω′→ω

∫
k′→k

∫ (
−〈P (k, ω, z)V (−k′, −ω′, z)〉
+〈P (k, ω, z)V ∗(k′, ω′, z)〉

)
dk′ dω′

]
dk dω

}
.

(A 6)
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